666 research outputs found

    Physical constraints on the coefficients of Fourier expansions in cylindrical coordinates

    Get PDF
    It is demonstrated that (i) the postulate of infinite differentiability in Cartesian coordinates and (ii) the physical assumption of regularity on the axis of a cylindrical coordinate system provide significant simplifying constraints on the coefficients of Fourier expansions in cylindrical coordinates. These constraints are independent of any governing equations. The simplification can provide considerable practical benefit for the analysis (especially numerical) of actual physical problems. Of equal importance, these constraints demonstrate that if A is any arbitrary physical vector, then the only finite Fourier terms of A_r and A_θ are those with m=1 symmetry. In the Appendix, it is further shown that postulate (i) may be inferred from a more primitive assumption, namely, the arbitrariness of the location of the cylindrical axis of the coordinate system

    Resistive Magnetohydrodynamic Equilibria in a Torus

    Full text link
    It was recently demonstrated that static, resistive, magnetohydrodynamic equilibria, in the presence of spatially-uniform electrical conductivity, do not exist in a torus under a standard set of assumed symmetries and boundary conditions. The difficulty, which goes away in the ``periodic straight cylinder approximation,'' is associated with the necessarily non-vanishing character of the curl of the Lorentz force, j x B. Here, we ask if there exists a spatial profile of electrical conductivity that permits the existence of zero-flow, axisymmetric r esistive equilibria in a torus, and answer the question in the affirmative. However, the physical properties of the conductivity profile are unusual (the conductivity cannot be constant on a magnetic surface, for example) and whether such equilibria are to be considered physically possible remains an open question.Comment: 17 pages, 4 figure

    The effectiveness of total quality management: a response to the critics.

    Get PDF
    A recent paper strongly berates total quality management, claiming it is a tool of management used to adversely manipulate workers in pursuit of corporate gain. This paper questions this supposition, arguing it is the abuse of TQM by management that is at fault. Effective TQM is based on four principles, customer satisfaction, continuous improvement, speaking with facts, and respect for people. It is the lack of the genuine respect for people that is the demise of most TQM initiatives

    Speechreading in Deaf Adults with Cochlear Implants: Evidence for Perceptual Compensation

    Get PDF
    Previous research has provided evidence for a speechreading advantage in congenitally deaf adults compared to hearing adults. A ‘perceptual compensation’ account of this finding proposes that prolonged early onset deafness leads to a greater reliance on visual, as opposed to auditory, information when perceiving speech which in turn results in superior visual speech perception skills in deaf adults. In the current study we tested whether previous demonstrations of a speechreading advantage for profoundly congenitally deaf adults with hearing aids, or no amplificiation, were also apparent in adults with the same deafness profile but who have experienced greater access to the auditory elements of speech via a cochlear implant (CI). We also tested the prediction that, in line with the perceptual compensation account, receiving a CI at a later age is associated with superior speechreading skills due to later implanted individuals having experienced greater dependence on visual speech information. We designed a speechreading task in which participants viewed silent videos of 123 single words spoken by a model and were required to indicate which word they thought had been said via a free text response. We compared congenitally deaf adults who had received CIs in childhood or adolescence (N = 15) with a comparison group of hearing adults (N = 15) matched on age and education level. The adults with CI showed significantly better scores on the speechreading task than the hearing comparison group. Furthermore, within the group of adults with CI, there was a significant positive correlation between age at implantation and speechreading performance; earlier implantation was associated with lower speechreading scores. These results are both consistent with the hypothesis of perceptual compensation in the domain of speech perception, indicating that more prolonged dependence on visual speech information in speech perception may lead to improvements in the perception of visual speech. In addition our study provides metrics of the ‘speechreadability’ of 123 words produced in British English: one derived from hearing adults (N = 61) and one from deaf adults with CI (N = 15). Evidence for the validity of these ‘speechreadability’ metrics come from correlations with visual lexical competition data

    CPU-less robotics: distributed control of biomorphs

    Get PDF
    Traditional robotics revolves around the microprocessor. All well-known demonstrations of sensory guided motor control, such as jugglers and mobile robots, require at least one CPU. Recently, the availability of fast CPUs have made real-time sensory-motor control possible, however, problems with high power consumption and lack of autonomy still remain. In fact, the best examples of real-time robotics are usually tethered or require large batteries. We present a new paradigm for robotics control that uses no explicit CPU. We use computational sensors that are directly interfaced with adaptive actuation units. The units perform motor control and have learning capabilities. This architecture distributes computation over the entire body of the robot, in every sensor and actuator. Clearly, this is similar to biological sensory- motor systems. Some researchers have tried to model the latter in software, again using CPUs. We demonstrate this idea in with an adaptive locomotion controller chip. The locomotory controller for walking, running, swimming and flying animals is based on a Central Pattern Generator (CPG). CPGs are modeled as systems of coupled non-linear oscillators that control muscles responsible for movement. Here we describe an adaptive CPG model, implemented in a custom VLSI chip, which is used to control an under-actuated and asymmetric robotic leg

    Speechreading Ability Is Related to Phonological Awareness and Single-Word Reading in Both Deaf and Hearing Children

    Get PDF
    PURPOSE: Speechreading (lipreading) is a correlate of reading ability in both deaf and hearing children. We investigated whether the relationship between speechreading and single-word reading is mediated by phonological awareness in deaf and hearing children. METHOD: In two separate studies, 66 deaf children and 138 hearing children, aged 5–8 years old, were assessed on measures of speechreading, phonological awareness, and single-word reading. We assessed the concurrent relationships between latent variables measuring speechreading, phonological awareness, and single-word reading. RESULTS: In both deaf and hearing children, there was a strong relationship between speechreading and single-word reading, which was fully mediated by phonological awareness. CONCLUSIONS: hese results are consistent with ideas from previous studies that visual speech information contributes to the development of phonological representations in both deaf and hearing children, which, in turn, support learning to read. Future longitudinal and training studies are required to establish whether these relationships reflect causal effects

    Algebraic approach in the study of time-dependent nonlinear integrable systems: Case of the singular oscillator

    Full text link
    The classical and the quantal problem of a particle interacting in one-dimension with an external time-dependent quadratic potential and a constant inverse square potential is studied from the Lie-algebraic point of view. The integrability of this system is established by evaluating the exact invariant closely related to the Lewis and Riesenfeld invariant for the time-dependent harmonic oscillator. We study extensively the special and interesting case of a kicked quadratic potential from which we derive a new integrable, nonlinear, area preserving, two-dimensional map which may, for instance, be used in numerical algorithms that integrate the Calogero-Sutherland-Moser Hamiltonian. The dynamics, both classical and quantal, is studied via the time-evolution operator which we evaluate using a recent method of integrating the quantum Liouville-Bloch equations \cite{rau}. The results show the exact one-to-one correspondence between the classical and the quantal dynamics. Our analysis also sheds light on the connection between properties of the SU(1,1) algebra and that of simple dynamical systems.Comment: 17 pages, 4 figures, Accepted in PR

    CPU-less robotics: distributed control of biomorphs

    Get PDF
    Traditional robotics revolves around the microprocessor. All well-known demonstrations of sensory guided motor control, such as jugglers and mobile robots, require at least one CPU. Recently, the availability of fast CPUs have made real-time sensory-motor control possible, however, problems with high power consumption and lack of autonomy still remain. In fact, the best examples of real-time robotics are usually tethered or require large batteries. We present a new paradigm for robotics control that uses no explicit CPU. We use computational sensors that are directly interfaced with adaptive actuation units. The units perform motor control and have learning capabilities. This architecture distributes computation over the entire body of the robot, in every sensor and actuator. Clearly, this is similar to biological sensory- motor systems. Some researchers have tried to model the latter in software, again using CPUs. We demonstrate this idea in with an adaptive locomotion controller chip. The locomotory controller for walking, running, swimming and flying animals is based on a Central Pattern Generator (CPG). CPGs are modeled as systems of coupled non-linear oscillators that control muscles responsible for movement. Here we describe an adaptive CPG model, implemented in a custom VLSI chip, which is used to control an under-actuated and asymmetric robotic leg

    Book Reviews

    Get PDF
    • …
    corecore